Lyt når som helst, hvor som helst

Nyd den ubegrænsede adgang til tusindvis af spændende e- og lydbøger - helt gratis

  • Lyt og læs så meget du har lyst til
  • Opdag et kæmpe bibliotek fyldt med fortællinger
  • Eksklusive titler + Mofibo Originals
  • Opsig når som helst
Start tilbuddet
DK - Details page - Device banner - 894x1036

Python Feature Engineering Cookbook: Over 70 recipes for creating, engineering, and transforming features to build machine learning models

Sprog
Engelsk
Format
Kategori

Fakta

Extract accurate information from data to train and improve machine learning models using NumPy, SciPy, pandas, and scikit-learn libraries

Key Features

• Discover solutions for feature generation, feature extraction, and feature selection

• Uncover the end-to-end feature engineering process across continuous, discrete, and unstructured datasets

• Implement modern feature extraction techniques using Python's pandas, scikit-learn, SciPy and NumPy libraries

Book Description

Feature engineering is invaluable for developing and enriching your machine learning models. In this cookbook, you will work with the best tools to streamline your feature engineering pipelines and techniques and simplify and improve the quality of your code.

Using Python libraries such as pandas, scikit-learn, Featuretools, and Feature-engine, you'll learn how to work with both continuous and discrete datasets and be able to transform features from unstructured datasets. You will develop the skills necessary to select the best features as well as the most suitable extraction techniques. This book will cover Python recipes that will help you automate feature engineering to simplify complex processes. You'll also get to grips with different feature engineering strategies, such as the box-cox transform, power transform, and log transform across machine learning, reinforcement learning, and natural language processing (NLP) domains.

By the end of this book, you'll have discovered tips and practical solutions to all of your feature engineering problems.

What you will learn

• Simplify your feature engineering pipelines with powerful Python packages

• Get to grips with imputing missing values

• Encode categorical variables with a wide set of techniques

• Extract insights from text quickly and effortlessly

• Develop features from transactional data and time series data

• Derive new features by combining existing variables

• Understand how to transform, discretize, and scale your variables

• Create informative variables from date and time

Who this book is for

This book is for machine learning professionals, AI engineers, data scientists, and NLP and reinforcement learning engineers who want to optimize and enrich their machine learning models with the best features. Knowledge of machine learning and Python coding will assist you with understanding the concepts covered in this book.

© 2020 Packt Publishing (E-bog): 9781789807820

Release date

E-bog: 22. januar 2020

Andre kan også lide...

Vælg dit abonnement

  • Over 600.000 titler

  • Download og nyd titler offline

  • Eksklusive titler + Mofibo Originals

  • Børnevenligt miljø (Kids Mode)

  • Det er nemt at opsige når som helst

Flex

For dig som vil prøve Mofibo.

89 kr. /måned
  • 1 konto

  • 20 timer/måned

  • Gem op til 100 ubrugte timer

  • Eksklusivt indhold hver uge

  • Fri lytning til podcasts

  • Ingen binding

Prøv gratis
Den mest populære

Premium

For dig som lytter og læser ofte.

129 kr. /måned
  • 1 konto

  • 100 timer/måned

  • Eksklusivt indhold hver uge

  • Fri lytning til podcasts

  • Ingen binding

Start tilbuddet

Unlimited

For dig som lytter og læser ubegrænset.

149 kr. /måned
  • 1 konto

  • Ubegrænset adgang

  • Eksklusivt indhold hver uge

  • Fri lytning til podcasts

  • Ingen binding

Start tilbuddet

Family

For dig som ønsker at dele historier med familien.

Fra 179 kr. /måned
  • 2-6 konti

  • 100 timer/måned pr. konto

  • Fri lytning til podcasts

  • Kun 39 kr. pr. ekstra konto

  • Ingen binding

2 konti

179 kr. /måned
Start tilbuddet