Lyt når som helst, hvor som helst

Nyd den ubegrænsede adgang til tusindvis af spændende e- og lydbøger - helt gratis

  • Lyt og læs så meget du har lyst til
  • Opdag et kæmpe bibliotek fyldt med fortællinger
  • Eksklusive titler + Mofibo Originals
  • Opsig når som helst
Start tilbuddet
DK - Details page - Device banner - 894x1036
Cover for Transformers in Deep Learning Architecture: Definitive Reference for Developers and Engineers

Transformers in Deep Learning Architecture: Definitive Reference for Developers and Engineers

Sprog
Engelsk
Format
Kategori

Fakta

"Transformers in Deep Learning Architecture"

"Transformers in Deep Learning Architecture" presents a comprehensive and rigorous exploration of the transformer paradigm—the foundational architecture that has revolutionized modern artificial intelligence. The book opens by situating transformers within the historical context of neural sequence models, methodically tracing their evolution from recurrent neural networks to the self-attention mechanisms that address their predecessor’s limitations. Early chapters lay a strong mathematical and conceptual foundation, introducing key terminology, theoretical principles, and detailed comparisons with alternative architectures to prepare readers for a deep technical dive.

At its core, the book delivers an in-depth analysis of the architectural details and operational intricacies that underpin transformer models. Subsequent chapters dissect the encoder-decoder framework, decompose self-attention and multi-head attention mechanisms, and discuss design choices such as positional encodings, feedforward networks, normalization strategies, and scaling laws. Readers also encounter a nuanced treatment of advanced attention variants—including efficient, sparse, and cross-modal extensions—along with proven paradigms for pretraining, transfer learning, and domain adaptation. Rich case studies illustrate the extraordinary performance of transformers in natural language processing, vision, audio, and multimodal tasks, highlighting both established applications and emerging frontiers.

Beyond technical mastery, the book addresses the practical dimensions and responsible deployment of large transformer models. It guides practitioners through scalable training, distributed modernization, and infrastructure optimization, while confronting contemporary challenges in interpretability, robustness, ethics, and privacy. The final chapters forecast the transformative future of the field with discussions on long-context modeling, symbolic integration, neuromorphic and quantum-inspired approaches, and the profound societal implications of widespread transformer adoption. Altogether, this volume stands as both an authoritative reference and a visionary roadmap for researchers and engineers working at the cutting edge of deep learning.

© 2025 HiTeX Press (E-bog): 6610000817047

Udgivelsesdato

E-bog: 28. maj 2025

Tags

    Andre kan også lide...

    Vælg dit abonnement

    • Over 1 million titler

    • Download og nyd titler offline

    • Eksklusive titler + Mofibo Originals

    • Børnevenligt miljø (Kids Mode)

    • Det er nemt at opsige når som helst

    Den mest populære

    Premium

    For dig som lytter og læser ofte.

    129 kr. /måned

    • Eksklusivt indhold hver uge

    • Fri lytning til podcasts

    • Ingen binding

    Prøv gratis

    Unlimited

    For dig som lytter og læser ubegrænset.

    159 kr. /måned

    • Eksklusivt indhold hver uge

    • Fri lytning til podcasts

    • Ingen binding

    Prøv gratis

    Family

    For dig som ønsker at dele historier med familien.

    Fra 179 kr. /måned

    • Fri lytning til podcasts

    • Kun 39 kr. pr. ekstra konto

    • Ingen binding

    Dig + 1 familiemedlem2 konti

    179 kr. /måned

    Prøv gratis

    Flex

    For dig som vil prøve Mofibo.

    89 kr. /måned

    • Gem op til 100 ubrugte timer

    • Eksklusivt indhold hver uge

    • Fri lytning til podcasts

    • Ingen binding

    Prøv gratis