Nyd den ubegrænsede adgang til tusindvis af spændende e- og lydbøger - helt gratis
Fakta
As part of the best-selling *Pocket Primer* series, this book introduces beginners to basic machine learning algorithms using TensorFlow 2. It provides a fast-paced introduction to TensorFlow, covering core features and machine learning basics with Python code samples. An appendix includes Keras-based code samples and explores MLPs, CNNs, RNNs, and LSTMs. The chapters illustrate how to solve various tasks, encouraging further reading to deepen your knowledge.
The journey begins with an introduction to TensorFlow 2, followed by essential APIs and datasets. You'll explore linear regression and classifiers, learning to apply TensorFlow to practical problems. The comprehensive appendix covers advanced topics like NLPs and deep learning architectures, enhancing your understanding of machine learning.
Understanding these concepts is crucial for modern AI applications. This book transitions readers from basic TensorFlow use to advanced machine learning techniques, blending theory with practical examples. Companion files with source code and figures enhance learning, making this an essential resource for mastering TensorFlow and machine learning.
© 2024 Packt Publishing (E-bog): 9781836646082
Release date
E-bog: 13. august 2024
Over 600.000 titler
Download og nyd titler offline
Eksklusive titler + Mofibo Originals
Børnevenligt miljø (Kids Mode)
Det er nemt at opsige når som helst
For dig som lytter og læser ofte.
1 konto
100 timer/måned
Eksklusivt indhold hver uge
Fri lytning til podcasts
Ingen binding
For dig som lytter og læser ubegrænset.
1 konto
Ubegrænset adgang
Eksklusivt indhold hver uge
Fri lytning til podcasts
Ingen binding
For dig som ønsker at dele historier med familien.
2-6 konti
100 timer/måned pr. konto
Fri lytning til podcasts
Kun 39 kr. pr. ekstra konto
Ingen binding
2 konti
179 kr. /månedFor dig som vil prøve Mofibo.
1 konto
20 timer/måned
Eksklusivt indhold hver uge
Fri lytning til podcasts
Gem ubrugt tid
Ingen binding
Dansk
Danmark