Lyt når som helst, hvor som helst

Nyd den ubegrænsede adgang til tusindvis af spændende e- og lydbøger - helt gratis

  • Lyt og læs så meget du har lyst til
  • Opdag et kæmpe bibliotek fyldt med fortællinger
  • Eksklusive titler + Mofibo Originals
  • Opsig når som helst
Start tilbuddet
DK - Details page - Device banner - 894x1036
Cover for QLoRA: Quantized Low-Rank Adaptation Techniques

QLoRA: Quantized Low-Rank Adaptation Techniques

Sprog
Engelsk
Format
Kategori

Fakta

"QLoRA: Quantized Low-Rank Adaptation Techniques"

"QLoRA: Quantized Low-Rank Adaptation Techniques" is the definitive guide to cutting-edge methods for making large neural networks adaptive, efficient, and scalable through the synergy of quantization and low-rank adaptation. The book opens with a thorough exploration of the challenges inherent in traditional fine-tuning approaches, emphasizing the urgent need for parameter-efficient strategies to keep pace with the growth of model sizes. Through a historical lens, it situates QLoRA at the intersection of classic adaptation techniques, providing foundational concepts and a clear structural roadmap for readers.

Diving deep into the theoretical and engineering underpinnings, the text elucidates the mathematics of quantized neural networks, low-rank matrix factorizations, and their profound implications for gradient stability, information retention, and model generalization. Readers are guided through canonical QLoRA architectures, advanced variants including hierarchical and multi-task scenarios, and practical workflows for efficient large-scale deployment—covering vital topics such as memory optimization, distributed training, mixed precision, and debugging. Extensive benchmarking studies, interpretability techniques, and visualizations help demystify the intricate trade-offs and real-world performance of QLoRA compared to alternative methods.

Beyond technical mastery, the book addresses pressing concerns of security, privacy, fairness, and compliance, empowering practitioners to deploy QLoRA responsibly across domains from NLP and multimodal AI to edge and federated learning. Forward-thinking applications and research trajectories discussed in the final chapters position QLoRA as pivotal to sustainable, high-impact, and trustworthy AI—equipping researchers, engineers, and practitioners alike with the insights and tools to redefine the future of model adaptation.

© 2025 HiTeX Press (E-bog): 6610001024215

Udgivelsesdato

E-bog: 20. august 2025

Tags

    Andre kan også lide...

    Vælg dit abonnement

    • Over 1 million titler

    • Download og nyd titler offline

    • Eksklusive titler + Mofibo Originals

    • Børnevenligt miljø (Kids Mode)

    • Det er nemt at opsige når som helst

    Den mest populære

    Premium

    For dig som lytter og læser ofte.

    129 kr. /måned

    • Eksklusivt indhold hver uge

    • Fri lytning til podcasts

    • Ingen binding

    Prøv gratis

    Unlimited

    For dig som lytter og læser ubegrænset.

    159 kr. /måned

    • Eksklusivt indhold hver uge

    • Fri lytning til podcasts

    • Ingen binding

    Prøv gratis

    Family

    For dig som ønsker at dele historier med familien.

    Fra 179 kr. /måned

    • Fri lytning til podcasts

    • Kun 39 kr. pr. ekstra konto

    • Ingen binding

    Dig + 1 familiemedlem2 konti

    179 kr. /måned

    Prøv gratis

    Flex

    For dig som vil prøve Mofibo.

    89 kr. /måned

    • Gem op til 100 ubrugte timer

    • Eksklusivt indhold hver uge

    • Fri lytning til podcasts

    • Ingen binding

    Prøv gratis