Nyd den ubegrænsede adgang til tusindvis af spændende e- og lydbøger - helt gratis
Fakta
Since their introduction in 2017, transformers have quickly become the dominant architecture for achieving state-of-the-art results on a variety of natural language processing tasks. If you're a data scientist or coder, this practical book shows you how to train and scale these large models using Hugging Face Transformers, a Python-based deep learning library.
Transformers have been used to write realistic news stories, improve Google Search queries, and even create chatbots that tell corny jokes. In this guide, Lewis Tunstall, Leandro von Werra, and Thomas Wolf use a hands-on approach to teach you how transformers work and how to integrate them in your applications. You'll quickly learn a variety of tasks they can help you solve.
● Build, debug, and optimize transformer models for core NLP tasks, such as text classification, named entity recognition, and question answering
● Learn how transformers can be used for cross-lingual transfer learning
● Apply transformers in real-world scenarios where labeled data is scarce
● Make transformer models efficient for deployment
● Train transformers from scratch and learn how to scale to multiple GPUs and distributed environments
© 2025 Ascent Audio (Lydbog): 9781663753106
Release date
Lydbog: 27. maj 2025
Tags
Over 600.000 titler
Download og nyd titler offline
Eksklusive titler + Mofibo Originals
Børnevenligt miljø (Kids Mode)
Det er nemt at opsige når som helst
For dig som lytter og læser ofte.
1 konto
100 timer/måned
Eksklusivt indhold hver uge
Fri lytning til podcasts
Ingen binding
For dig som lytter og læser ubegrænset.
1 konto
Ubegrænset adgang
Eksklusivt indhold hver uge
Fri lytning til podcasts
Ingen binding
For dig som ønsker at dele historier med familien.
2-6 konti
100 timer/måned pr. konto
Fri lytning til podcasts
Kun 39 kr. pr. ekstra konto
Ingen binding
2 konti
179 kr. /månedFor dig som vil prøve Mofibo.
1 konto
20 timer/måned
Eksklusivt indhold hver uge
Fri lytning til podcasts
Gem ubrugt tid
Ingen binding
Dansk
Danmark