Lyt når som helst, hvor som helst

Nyd den ubegrænsede adgang til tusindvis af spændende e- og lydbøger - helt gratis

  • Lyt og læs så meget du har lyst til
  • Opdag et kæmpe bibliotek fyldt med fortællinger
  • Eksklusive titler + Mofibo Originals
  • Opsig når som helst
Start tilbuddet
DK - Details page - Device banner - 894x1036
Cover for Math for Machine Learning: Linear Algebra, Calculus, and Probability Explained

Math for Machine Learning: Linear Algebra, Calculus, and Probability Explained

Sprog
Engelsk
Format
Kategori

Fakta

Master the Mathematical Foundation Every Machine Learning Engineer Needs

Are you implementing machine learning algorithms without truly understanding the mathematical principles that power them? Do complex ML concepts feel like black boxes because you lack the mathematical foundation to see inside them? This comprehensive guide bridges the gap between mathematical theory and practical machine learning applications.

Math for Machine Learning: Linear Algebra, Calculus, and Probability Explained transforms abstract mathematical concepts into clear, actionable knowledge that will elevate your machine learning expertise. Unlike dry academic textbooks, this book connects every mathematical concept directly to real-world ML applications, showing you not just how the math works, but why it's essential for machine learning success.

What You'll Master:

Linear Algebra Foundations:

Vectors and matrices as the language of data manipulation

Eigenvalues and eigenvectors for dimensionality reduction

Singular Value Decomposition (SVD) for recommendation systems

Matrix transformations that power neural networks

Calculus for Optimization:

Derivatives and gradients that enable machine learning

Multivariable calculus for complex model optimization

Mathematical optimization techniques used in gradient descent

Partial derivatives for understanding parameter updates

Probability and Statistics:

Probability distributions underlying ML algorithms

Statistical inference for model validation

Expectation and variance for uncertainty quantification

Bayesian thinking for probabilistic machine learning

Applied Mathematical Concepts:

The mathematics behind linear and logistic regression

Neural network backpropagation from first principles

Principal Component Analysis (PCA) mathematical foundations

Optimization algorithms that make learning possible

Why This Book Is Different:

Every mathematical concept is immediately connected to practical machine learning applications. You'll see how vector operations power recommendation engines, how derivatives drive optimization algorithms, and how probability distributions enable uncertainty quantification. The book includes Python implementations using NumPy, SciPy, and scikit-learn, so you can immediately apply what you learn.

Perfect for:

Software engineers transitioning to machine learning

Data science students seeking mathematical clarity

Anyone implementing algorithms without mathematical confidence

Progressive Learning Structure:

Starting with mathematical fundamentals, the book builds systematically through linear algebra, calculus, and probability. Each chapter includes visual explanations, practical examples, and Python code implementations. You'll progress from basic vector operations to understanding the complete mathematical framework behind neural networks.

The final chapters demonstrate how these mathematical concepts unite in real ML algorithms, with hands-on mini-projects that reinforce your learning. Comprehensive appendices provide quick reference materials and Python cheat sheets for ongoing use.

No Advanced Prerequisites Required:

Written for practitioners, not mathematicians. If you can program and aren't afraid of mathematical concepts, you're ready to begin. Complex ideas are broken down into digestible explanations with plenty of visual aids and practical examples.

Start building unshakeable mathematical confidence in machine learning today.

© 2025 Dargslan s.r.o. (E-bog): 6610001067571

Udgivelsesdato

E-bog: 30. september 2025

Vælg dit abonnement

  • Over 1 million titler

  • Download og nyd titler offline

  • Eksklusive titler + Mofibo Originals

  • Børnevenligt miljø (Kids Mode)

  • Det er nemt at opsige når som helst

Den mest populære

Premium

For dig som lytter og læser ofte.

129 kr. /måned

7 dage gratis
  • Eksklusivt indhold hver uge

  • Fri lytning til podcasts

  • Ingen binding

Prøv gratis

Unlimited

For dig som lytter og læser ubegrænset.

159 kr. /måned

  • Eksklusivt indhold hver uge

  • Fri lytning til podcasts

  • Ingen binding

Prøv gratis

Family

For dig som ønsker at dele historier med familien.

Fra 179 kr. /måned

7 dage gratis
  • Fri lytning til podcasts

  • Kun 39 kr. pr. ekstra konto

  • Ingen binding

Dig + 1 familiemedlem2 konti

179 kr. /måned

Start tilbuddet

Flex

For dig som vil prøve Mofibo.

89 kr. /måned

7 dage gratis
  • Gem op til 100 ubrugte timer

  • Eksklusivt indhold hver uge

  • Fri lytning til podcasts

  • Ingen binding

Prøv gratis