Lyt når som helst, hvor som helst

Nyd den ubegrænsede adgang til tusindvis af spændende e- og lydbøger - helt gratis

  • Lyt og læs så meget du har lyst til
  • Opdag et kæmpe bibliotek fyldt med fortællinger
  • Eksklusive titler + Mofibo Originals
  • Opsig når som helst
Prøv gratis
DK - Details page - Device banner - 894x1036

Hands-On Machine Learning with C#: Build smart, speedy, and reliable data-intensive applications using machine learning

Sprog
Engelsk
Format
Kategori

Fakta

Andre kan også lide...

  1. Hands-On Automated Machine Learning: A beginner's guide to building automated machine learning systems using AutoML and Python Sibanjan Das
  2. Hands-On Music Generation with Magenta: Explore the role of deep learning in music generation and assisted music composition Alexandre DuBreuil
  3. R Machine Learning Projects: Implement supervised, unsupervised, and reinforcement learning techniques using R 3.5 Dr. Sunil Kumar Chinnamgari
  4. Hands-On One-shot Learning with Python: Learn to implement fast and accurate deep learning models with fewer training samples using PyTorch Shruti Jadon
  5. Building Machine Learning Systems with Python: Explore machine learning and deep learning techniques for building intelligent systems using scikit-learn and TensorFlow, 3rd Edition Matthieu Brucher
  6. Hands-On Neuroevolution with Python: Build high-performing artificial neural network architectures using neuroevolution-based algorithms Iaroslav Omelianenko
  7. Hands-On Meta Learning with Python: Meta learning using one-shot learning, MAML, Reptile, and Meta-SGD with TensorFlow Sudharsan Ravichandiran
  8. Hands-On Artificial Intelligence with TensorFlow: Useful techniques in machine learning and deep learning for building intelligent applications Ankit Dixit
  9. Hands-On Graph Neural Networks Using Python: Practical techniques and architectures for building powerful graph and deep learning apps with PyTorch Maxime Labonne
  10. Mastering Machine Learning Algorithms: Expert techniques to implement popular machine learning algorithms and fine-tune your models Giuseppe Bonaccorso c/o Quandoo