Lyt når som helst, hvor som helst

Nyd den ubegrænsede adgang til tusindvis af spændende e- og lydbøger - helt gratis

  • Lyt og læs så meget du har lyst til
  • Opdag et kæmpe bibliotek fyldt med fortællinger
  • Eksklusive titler + Mofibo Originals
  • Opsig når som helst
Start tilbuddet
DK - Details page - Device banner - 894x1036
Cover for Data Science Algorithms in a Week

Data Science Algorithms in a Week

Sprog
Engelsk
Format
Kategori

Fakta

Build strong foundation of machine learning algorithms In 7 days.

About This Book • Get to know seven algorithms for your data science needs in this concise, insightful guide

• Ensure you're confident in the basics by learning when and where to use various data science algorithms

• Learn to use machine learning algorithms in a period of just 7 days

Who This Book Is For

This book is for aspiring data science professionals who are familiar with Python and have a statistics background. It is ideal for developers who are currently implementing one or two data science algorithms and want to learn more to expand their skill set.

What You Will Learn • Find out how to classify using Naive Bayes, Decision Trees, and Random Forest to achieve accuracy to solve complex problems

• Identify a data science problem correctly and devise an appropriate prediction solution using Regression and Time-series

• See how to cluster data using the k-Means algorithm

• Get to know how to implement the algorithms efficiently in the Python and R languages

In Detail

Machine learning applications are highly automated and self-modifying, and they continue to improve over time with minimal human intervention as they learn with more data. To address the complex nature of various real-world data problems, specialized machine learning algorithms have been developed that solve these problems perfectly. Data science helps you gain new knowledge from existing data through algorithmic and statistical analysis.

This book will address the problems related to accurate and efficient data classification and prediction. Over the course of 7 days, you will be introduced to seven algorithms, along with exercises that will help you learn different aspects of machine learning. You will see how to pre-cluster your data to optimize and classify it for large datasets. You will then find out how to predict data based on the existing trends in your datasets.

This book covers algorithms such as: k-Nearest Neighbors, Naive Bayes, Decision Trees, Random Forest, k-Means, Regression, and Time-series. On completion of the book, you will understand which machine learning algorithm to pick for clustering, classification, or regression and which is best suited for your problem.

Style and approach

Machine learning applications are highly automated and self-modifying which continue to improve over time with minimal human intervention as they learn with more data. To address the complex nature of various real world data problems, specialized machine learning algorithms have been developed that solve these problems perfectly.

© 2017 Packt Publishing (E-bog): 9781787282742

Udgivelsesdato

E-bog: 16. august 2017

Andre kan også lide...

Vælg dit abonnement

  • Over 1 million titler

  • Download og nyd titler offline

  • Eksklusive titler + Mofibo Originals

  • Børnevenligt miljø (Kids Mode)

  • Det er nemt at opsige når som helst

Den mest populære

Premium

For dig som lytter og læser ofte.

129 kr. /måned

7 dage gratis
  • Eksklusivt indhold hver uge

  • Fri lytning til podcasts

  • Ingen binding

Prøv gratis

Unlimited

For dig som lytter og læser ubegrænset.

159 kr. /måned

  • Eksklusivt indhold hver uge

  • Fri lytning til podcasts

  • Ingen binding

Prøv gratis

Family

For dig som ønsker at dele historier med familien.

Fra 179 kr. /måned

7 dage gratis
  • Fri lytning til podcasts

  • Kun 39 kr. pr. ekstra konto

  • Ingen binding

Dig + 1 familiemedlem2 konti

179 kr. /måned

Prøv gratis

Flex

For dig som vil prøve Mofibo.

89 kr. /måned

7 dage gratis
  • Gem op til 100 ubrugte timer

  • Eksklusivt indhold hver uge

  • Fri lytning til podcasts

  • Ingen binding

Prøv gratis